Quantum Computers: What Are They Good For?

Rubem Mondaini

June 11th, 2024

Quantum superposition and measurement

How these seemingly odd concepts can be used to perform quantum computations?

Quantum uncertainty principle

Quantum entanglement

(also known as "spooky action at distance"...)

 $\Delta x \Delta p \geq \hbar/2$

Computations Classical and Quantum

Let's recall classical computation

classical bit

data units:

valid states:

x = '0' or '1'

operations:

logical

'()'

Quantum computation

qubit = quantum bit

 $|0\rangle$

data units:

valid states:

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle$$
 \oplus $\sin\frac{\theta}{2}e^{\mathrm{i}\phi}|1\rangle$

Richard Feynman

operations:

1-qubit

unitary

 $|1\rangle$

2-qubits

"Creating machines based on the laws of quantum mechanics instead of the laws of classical physics." (1982)

[+ Benioff, Manin]

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$
$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

 $\text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ What does that mean? Quantum superposition

Possible outcomes

How about **entanglement**?

Entangled coins/states:

• Obtaining H/T for the first \rightarrow defines the outcome of the second

- Coins can no longer be thought of being independent, they are *entangled*
- Curiosity: 300 coins $\rightarrow 2^{300} \approx 10^{90}$ states > # atoms in the universe $\approx 10^{80}$

[Science, **354** 6316]

Existing **qubit** platforms

Silicon quantum dots

- "Artificial atoms" made by adding an electron to a small piece of pure silicon.
- Microwaves control the electron's quantum state.

Intel, HRL, QuTech UNSW, Delft, RIKEN, ...

Trapped ions

Superconducting loops

Laser	
Electron	

- Ions, have quantum energies that depend on the location of electrons.
- Tuned lasers cool and trap the ions, and put them in superposition states.

IonQ, Honeywell Maryland, ...

- Resistance-free current oscillates back and forth around a circuit loop
- Injected microwave signal excites the current into superposition states
- Emulates a quantum anharmonic oscillator

Google, IBM, ... ZJU, UESTC, ...

Building many of them – Noisy intermediate quantum devices

Silicon quantum dots

Trapped ions

Superconducting quantum circuits

[Qutech 2022]

[Maryland, IonQ]

[IOP, ZJU]

How it works?

[QuEra Computing Inc.]

Qubits are "measured"

Large number of states → small output

QuarkNet Summer Workshop at Rice University 2024

Platform agnostic

•

 Possibility of error detection/ correction

The more things change, the more they stay the same...

First general-purpose digital computer

- 30 tons
- 18,000 vacuum tubes
- 1,500 relays
- +100,000 of resistors, capacitors and inductors,
- = add or subtract 5,000 times per second!

SC quantum circuit

- 36-qubits (121 available)
- Fully programmable
- Emulates dynamics of Ĥ with dim = 9B states
- Operates at 20mK...

Quantum Computers: What Are They Good For?

- Quantum processing
- Quantum communication
- Quantum memory

Code cracking – factoring large prime numbers

• Shor algorithm – quantum circuit to find prime factors of an integer +classical routines

In practice: n = 15 or 21 have been demonstrated so far

[Nature 414, 883 (2001)] [Nature Photonics 6, 773 (2012)]

Quantum Computational Chemistry

→ Finding the lowest energy states of molecules – dictates the structure of the molecule and how it will interact with other molecules.

→ critical for chemists to design new molecules, reactions, and chemical processes for industrial applications.

Quantum Computational Chemistry – last month's (preprint)

Robledo-Moreno et al. "Chemistry Beyond Exact Solutions on a Quantum-Centric Supercomputer" arXiv:2405.05068

Quantum Finance?

nature reviews physics

Explore content 🗸 About the journal 🗸 Publish with us 🗸 Subscribe

nature > nature reviews physics > review articles > article

Review Article | Published: 11 July 2023

Quantum computing for finance

Dylan Herman 🖾, Cody Googin, Xiaoyuan Liu, Yue Sun, Alexey Galda, Ilya Safro, Marco Pistoia & Yuri Alexeev

Nature Reviews Physics 5, 450-465 (2023) Cite this article

npj Quantum Information

ARTICLE OPEN Quantum risk analysis

Stefan Woerner ¹ and Daniel J. Egger¹

 \rightarrow Applications for finance problems, such as portfolio optimization, risk estimation ...

Quantum Amplitude Estimation → used to estimate risk measures with a quadratic speed-up over classical Monte Carlo simulation.

Example:

Solving (or giving hints) on some very hard Physics problems

 \rightarrow Localization of quantum particles in the presence of interactions (many-body localization)

Localization under disorder

PW Anderson

Nobel Prize 1977

[Roushan *et al.*, Science **358**, 1175 (2017)]

[Guo, ..., **RM*** Phys. Rev. Lett. **127**, 240502 (2021)]

Local quantum memory? Maybe we don't need a quantum computer for that...

[see also Guo, **RM***, Nature Physics 17, 234 (2021)]

Quantum Communication

• Probing entanglement at large distances

Pair of entangled photons sent to receivers 1200km (~745 miles) apart \rightarrow one photon's quantum state instantly determines the other's

• Quantum key distribution

Quantum Communication - quantum state transfer in a quantum computer

"SWAP train"

Or: Multigate Hamiltonian evolution – "analog" mode – hybrid computation ٠

[L. Xiang, ..., **RM***, Scalettar, Nat. Comm. 15 4918 (2024)]

What is the bottleneck? Quantumness of Qubits don't last long and gates are not perfect...

 \rightarrow Solution:

• Quantum error correction

+noise

• Physical vs. Logical qubits

Several qubits working together as one to represent one qubit of information

- → **The goal**: even if one physical qubit "fails", the remainder in the logical set recovers the information
- Set of **data encoding** + **low-depth checks** to ensure the information is preserved
- Active area of research and demonstration!
 - → eg: "*Suppressing quantum errors by scaling a surface code logical qubit*" Google Quantum AI*, Nature **614**, 676 (2023)

[Gambetta, Chow, Steffen npj Quantum Information 3, 2 (2017)]

Take away message

Thank you!

- \rightarrow Quantum computers algorithmically apply the standard laws of quantum mechanics
- → Search of new problems **and** corresponding algorithms that can be implemented in QC's is a field of intense research
- → Avoid the hype: Quantum computers will likely not replace our classical computers any time soon. They are often designed for very specific tasks, and are doing so (currently) sub-optimally
- → But there are many fun things that they can accomplish!

"If you don't talk to your kids about quantum computing... someone else will."

Scott Aaronson (UT Austin)

Extra slides

Monte Carlo comes to the rescue!

Ising model

$$E_{\{S\}} = -J \sum_{\langle i,j \rangle} S_i S_j, \quad S_i = \pm 1$$

 $p_{\{S\}}(T) \propto e^{-E_{\{S\}}/T}$

Annealing: $T_{\mathrm{high}}
ightarrow T_{\mathrm{low}}$ proposing spin flips

Provides search to a low-energy configuration

Quantum state transfer

$$\tilde{F}(t^*) = 1 - |\langle \psi(t^*) | \psi_{\text{target}} \rangle|^2$$
 with $|\psi(t^*)\rangle = e^{-i\hat{H}t^*} |\psi(0)\rangle$

$$p_{\{J_{ix},J_{iy},J_{\times}\}} \propto e^{-\tilde{F}/T}$$

Annealing: $T_{\text{high}} \rightarrow T_{\text{low}}$ proposing $\{J_{ix}, J_{iy}\}$ changes

Transmon qubit:

Classically

$$H = \frac{1}{2}CV^{2} + \frac{1}{2}LI^{2}$$

$$\left(m = C \ \omega = 1/\sqrt{LC} \to H = p^2/2m + m\omega^2 x^2/2\right)$$

Quantum

$$\hat{H} = 4E_C\hat{n}^2 + \frac{1}{2}E_L\phi^2$$

 $E_C = e^2 / (2C) \qquad n = n_{\text{zpf}} \times i(a - a^{\dagger})$ $\tilde{E}_L = (\Phi_0 / 2\pi)^2 / L \qquad \phi = \phi_{\text{zpf}} \times (a + a^{\dagger})$

Second quantization: $H = \hbar \omega_r \left(a^{\dagger} a + \frac{1}{2} \right) \qquad \omega_r = \sqrt{8E_L E_C} / \hbar = 1 / \sqrt{LC}$

QuarkNet Summer Workshop at Rice University 2024

equally spaced energy levels

no selectivity

LC oscillator

