

Probing the Nature's Primordial Fluid

Volodymyr Vovchenko (University of Houston)

vvovchen@central.uh.edu - https://vovchenko.net

QuarkNet Summer Workshop 2025 – Rice University

June 10, 2025

Structure of matter

Extreme states of matter

3

Standard model

Standard Model of Elementary Particles

mid-1970s

Predicted the top quark (disc. 1995), the tau neutrino (disc. 2000), and the Higgs boson (disc. 2012)

- Strong (nuclear) force
 - Quarks and gluons, short-range
- Electromagnetic force
 - Charged particles (Coulomb), long-range
- Weak force
 - Fermions (incl. neutrinos)

5

Strongly interacting matter

- Theory of strong interactions: Quantum Chromodynamics (QCD)
 - $\mathcal{L} = \sum_{q=u,d,s,...} \bar{q} \left[i \gamma^{\mu} (\partial_{\mu} i g A^{a}_{\mu} \lambda_{a}) m_{q}
 ight] q rac{1}{4} G^{a}_{\mu
 u} G^{\mu
 u}_{a}$
- Basic degrees of freedom: quarks and gluons that carry color charge
- At smaller energies confined into baryons (qqq) and mesons $(q\bar{q})$

Scales

- Length: 1 femtometer = 10^{-15} m
- Temperature: 100 MeV $/k_B = 10^{12}$ K

Where is it relevant?

- Early Universe
- Astrophysics: Neutron star (mergers)
- Studied in laboratory with heavy-ion collisions

emperatur

QCD features and emergent phenomena

100

2.5

G. Bali

2

Hadrons (confinement) •

•

٠

٠

- No free quarks or gluons ever observed •
- They must form composite, color-neutral objects the hadrons •
 - Proton (uud) and neutron (udd)
- No small parameter makes the theory virtually untractable \otimes •
- Dynamical mass generation •
 - Proton (uud) mass is $m_p = 938 \text{ MeV/c}^2$ but $m_u + m_u + m_d \sim 15 \text{ MeV/c}^2$ ٠
 - >95% of proton's mass from QCD, only <5% is from Higgs •

Confinement

• Forces usually get weaker with distance

Confinement

• Forces usually get weaker with distance

• electron

can easily separate constituents $F \sim 1/r^2$

charged nucleus

• Quarks in QCD are confined

"white" proton
(confined quarks)

"white" pion (confined $q\overline{q}$)

• Try to separate quarks

quark-antiquark pair created from vacuum

Non-perturbative methods

First-principle tool: Lattice QCD – a brute force Monte Carlo solution on a discretized space-time grid

Ab-initio calculation of hadron masses

 $[\]ensuremath{\mathbb{C}}$ CSSM, University of Adelaide

BMW Collaboration, Science 322, 1224 (2008)

Remarkable agreement of QCD with the experiment

From confinement to deconfinement

1. heating

2. compression

→ deconfined color matter (quark-gluon plasma)

Q Hold Ghiro MR Hold General déconfined)!

Crossover transition at $T_c \approx 155 \text{ MeV} \approx 2 \cdot 10^{12} \text{ K} \approx 130,000 \cdot \text{T}$ [Sun's core]

[Y. Aoki et al., Nature 443, 675 (2006)]

QCD phase diagram

- Finite baryon densities inaccessible due to the sign problem
- Possible existence of a phase transition is a conjecture
- Laboratory: heavy-ion collisions test of QCD and a tool unveil its many properties

QCD laboratories (~1980-...)

SUISSE FRANCE CERN Prévessin LHCb CERN Prévessin ALLCE LHC 27 km

RHIC@BNL (2000-), 200 GeV, 99.995% speed of light

FAIR@GSI [2026(?)-], 5 GeV (less is more)

LHC@CERN (2010-), 5020 GeV, 99.9999991% speed of light

ALICE detector

Relativistic Heavy Ion Collider (RHIC)

Pb + Pb, Ekl = 158,0A GeV b = 0,0 fm Time: -19,50 fm/c

Relativistic collision energy leads to particle production

UrQMD model simulation

Length: 10⁻¹⁵ m

Time: 10⁻²² s

Relativistic heavy-ion collisions – "Little Bangs"

Control parameters

- Collision energy $\sqrt{s_{NN}} = 2.4 5020 \text{ GeV}$
- Size of the collision region

Measurements

• Final hadron abundances and momentum distributions

UNIVERSITY OF

Big Bang vs Little Bang

1 event Slow expansion, long-lived

Heavy-Ion Collision

Millions of events Rapid expansion, short-lived

Fireball in heavy-ion collisions

Apply concepts of statistical mechanics

Ideal gas law (E. Clapeyron, 1834)

 $P_i V = N_i k_B T$ (+ feeddown)

$$N_i = \frac{d_i V}{2\pi^2} \int dk \, k^2 \left[1 \pm \exp\left(\frac{\sqrt{k^2 + m_i^2} - \mu_i}{T}\right) \right]^{-1}$$

```
Bose-Einstein & Fermi-Dirac, 1924-1926
```

is the simplest model of particle production

ALICE Collaboration, EPJC 84, 813 (2024)

© J. Cleymans

Mapping heavy-ion collisions onto the QCD phase diagram

Fit hadron yields with the HRG model

 $\sqrt{s_{NN}} \searrow \qquad \mu_B \nearrow$

Heavy-ion freeze-out probes the QCD transition at zero and non-zero baryon density

Flow and hydrodynamics

$$\frac{dN}{d\Phi dp_t} = \frac{dN}{dp_t} \left(1 + v_1(p_t)\cos(\Phi) + 2v_2(p_t)\cos(2\Phi) + \ldots\right)$$

QGP is a fluid!

From ALICE Collaboration, Phys. Rev. Lett. 107, 032301 (2011)

From Bernhard, Moreland, Bass, Nature Physics 15, 1113 (2019)

Shear viscosity over entropy of QGP: $\eta/s \le 0.25$ – a near 'perfect' fluid

The early universe behaves like a perfect liquid rather than a gas or plasma

QGP is the hottest and most vortical fluid created on Earth UNIVERSITY OF HOUSTON

The Earths magnetic field 0.6 Gauss A common, hand-held magnet 100 Gauss 4.5 x 105 Gauss The strongest steady magnetic fields achieved so far in the laboratory The strongest man-made fields 10' Gauss ever achieved, if only briefly Typical surface, polar magnetic 1013 Gauss fields of radio pulsars Surface field of Magnetars 1015 Gauss http://solomon.as.utexas.edu/~duncan/magnetar.html

Heavy ion collisions: the strongest magnetic field ever achieved in the laboratory Off central Gold-Gold Collisions at 100 GeV per nucleon $e B(\tau=0) \sim 10^{a}$ Gauss

The challenge of discovering the QCD critical point

Disclaimer: This is my area of active research

QCD critical point

Figure from Bzdak et al., Phys. Rept. '20 and 2015 Nuclear Long Range Plan

What is the nature of the quark-hadron transition at finite baryon density?

Is there a QCD phase transition and critical point? Where?

Lattice QCD: sign problem prevents simulations at non-zero baryon density

Heavy-ion collisions: access finite density but might be too short-lived to observe a signal

Extrapolating critical point from lattice

$$\left(\frac{\partial P}{\partial \rho_B}\right)_T = 0, \qquad \left(\frac{\partial^2 P}{\partial \rho_B^2}\right)_T = 0.$$

$$\left(\frac{\partial T}{\partial s}\right)_{\mu_B} = 0, \qquad \left(\frac{\partial^2 T}{\partial s^2}\right)_{\mu_B} = 0.$$

Extrapolate from $\mu_B = 0!$

UNIVERSITY OF

Looking for entropy crossings

• Critical point ruled out (2σ level) at $\mu_B < 400$ MeV

First-order phase transition emerges at $\mu_B > 600 \text{ MeV}$

• Try going further

•

Borsanyi et al., arXiv:2502.10267

Expansion around $\mu_B = 0$ $T_s(\mu_B; T_0) = T_0 + \alpha_2(T_0) \frac{\mu_B^2}{2}$

UNIVERSITY OF

QCD critical point estimates

Critical point estimate at $O(\mu_B^2)$: $T_c = 114 \pm 7 \text{ MeV}, \quad \mu_B = 602 \pm 62 \text{ MeV}$ **Estimates from recent literature:** YLE-1: D.A. Clarke et al. (Bielefeld-Parma), arXiv:2405.10196 YLE-2: G. Basar, PRC 110, 015203 (2024) BHE: M. Hippert et al., arXiv:2309.00579 fRG: W-J. Fu et al., PRD 101, 054032 (2020) DSE/fRG: Gao, Pawlowski., PLB 820, 136584 (2021) DSE: P.J. Gunkel et al., PRD 104, 052022 (2021) FSS: A. Sorensen et al., arXiv:2405.10278

Optimist's view: Different estimates converge onto the same region because QCD CP is likely there **Pessimist's view:** Different estimates converge onto the same region because it's the closest not yet ruled out by LQCD

Critical point and fluctuations

Density fluctuations at macroscopic length scales

Critical opalescence

Unfortunately, we cannot do this in heavy-ion collisions

Event-by-event fluctuations and statistical mechanics

Cumulants: $G_N(t) = \ln \langle e^{tN} \rangle = \sum_{n=1}^{\infty} \kappa_n \frac{t^n}{n!}$ variance $\kappa_2 = \langle (\Delta N)^2 \rangle = \sigma^2$

skewness

kurtosis

 $\kappa_3 = \langle (\Delta N)^3
angle$ $\kappa_4 = \langle (\Delta N)^4
angle - 3 \langle (\Delta N^2)
angle^2$ width asymmetry peak shape

Statistical mechanics:

Grand partition function

$$ln Z^{
m gce}(T,V,\mu) = ln \left[\sum_{N} e^{\mu N} Z^{
m ce}(T,V,N)
ight],$$

Cumulants measure chemical potential derivatives of the (QCD) equation of state

Example: (Nuclear) Liquid-gas transition

VV, Anchishkin, Gorenstein, Poberezhnyuk, PRC 92, 054901 (2015)

Example: Critical fluctuations in microscopic simulation

V. Kuznietsov (grad student UH) et al., Phys. Rev. C 105, 044903 (2022)

Instead of observing system macroscopically, track each single particle

Classical molecular dynamics simulations of the **Lennard-Jones fluid** near critical point $(T \approx 1.06T_c, n \approx n_c)$ of the liquid-gas transition

Large fluctuations survive despite strong finite-size effects and are large as advertised near the critical point

Equilibrium Expectations and Beam Energy Scan

One of primary motivations for beam energy scan (BES) programs at RHIC BES-I (7.7-200 GeV) and BES-II (3-4.5 & 7.7-39 GeV)

Compare recent CP estimates and the freeze-out curve

UNIVERSITY OF

Measuring cumulants in heavy-ion collisions

Cumulants are extensive, $\kappa_n \sim V$, use ratios to cancel out the volume

$$\frac{\kappa_2}{\langle N \rangle}$$
, $\frac{\kappa_3}{\kappa_2}$, $\frac{\kappa_4}{\kappa_2}$

Look for subtle critical point signals

Theory vs experiment

Quantitative calculations of critical fluctuations are still not available

State-of-the-art non-critical baseline computed using hydrodynamics

VV, V. Koch, C. Shen, Phys. Rev. C 105, 014904 (2022)

Subtract it from the data and look for a possible signal of CP

Analysis of RHIC-BES-II data in progress

Neutron stars are extremely compact objects (1-2 solar masses confined to an 8-mile sphere)

Pressure of dense nuclear matter balances the gravitational pull

Properties of dense nuclear matter define how heavy neutron stars can be and how large they are

Intermediate energy heavy-ion collisions probe same dense nuclear matter

The ultimate "heavy-ion" collision

COSMOLOGY | RESEARCH UPDATE

Gravitational waves from neutron-star mergers could reveal quark-gluon plasma ^{15 May 2020}

Dark star crashes: the computer simulation of two merging neutron stars (left) blended with an image of heavy-ion collisions at CERN to highlight the connection of astrophysics with nuclear physics. Courtesy: Lukas R Weih and Luciano Rezzolla/Goethe University Frankfurt and CMS/CERN)

